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Abstract:  The metabolomics approach successfully explained the possible neuroprotective effect of 

Clinacanthus nutans (Burm. f.) Lindau (CN) leaf extracts. Forty-four metabolites were putatively identified via 

proton Nuclear Magnetic Resonance (1H NMR and J-resolved NMR) metabolic profiling of CN leaf extracts in 

three types of solvents, namely water, 50% ethanol, and ethanol. Metabolite fingerprinting has efficaciously 

differentiated aqueous between the other two extracts. The variable importance of projection (VIP) showed that 

30 metabolites were responsible for the discrimination of the extracts by component 1 in the Partial Least Square 

(PLS) score plot. The lipopolysaccharides (LPS)-induced murine microglial of the BV2 cell line successfully 

exhibited aqueous CN as the closest extract related to the nitrite oxide (NO) inhibitory activity via PLS biplot, 

with an IC50 value of 336.2 ± 4.7 µg/mL through Griess assay. The cytotoxicity assay also indicated that all CN 

extracts were non-toxic. Schaftoside, acetate, propionate, alanine, and clinacoside C were identified as the most 

potential biomarkers in the anti-inflammatory assay. Hence, the aqueous CN extract could be further 

investigated, particularly relating to the anti-neuroinflammation study. 

 

Keywords: 1H NMR; Clinacanthus nutans; anti-neuroinflammation; BV2 cells.  © 2020 ACG Publications. All 

rights reserved. 

 
 

1. Introduction 

Clinacanthus nutans (CN) is a plant of the Acanthaceae family, which is one of the largest 

sources of medicinal plant families used for traditional medicines [1]. CN is locally known by 

Malaysian as Belalai Gajah, which grows as small shrub and native to tropical Asian countries notably 

in Thailand, Indonesia and Malaysia [2]. This plant is actively used by traditional practitioners to treat 

skin rashes, diabetes mellitus, fever, scorpion-, insect- and snake-bites, and as diuretic agents [3-4]. 

Various pharmacological researches reported CN as possessing antioxidant, anti-inflammatory and 

anti-viral properties [5-7].  
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Phytochemical investigations on CN revealed that it is rich in bioactive compounds with reported 

major constituents from triterpene, C-glycosyl flavone, and sulfur-containing glucoside groups [1,8-

11]. Some of the reported metabolites could be related to certain bioactivities. Flavones (schaftoside), 

triterpenes (lupeol), and phytosterols (β-sitosterol and stigmasterol) were found to give 

immunosuppressive activity [12]. Both phytosterols (β-sitosterol and stigmasterol) was able to inhibit 

T proliferation selectively, whereas only β-sitosterol significantly reduced the anti-inflammatory 

cytokines, interleukin (IL-4 and IL-10) of T helper 2 (Th2) cytokines [12]. Hence, these findings 

suggest that CN might have multiple potentials in immune response effects and any resulting 

inflammation depending on the model used.  

Inflammation involves a complex body response towards injury and infection of the 

somatosensory, immune, autonomic and vascular systems [13]. Neuroinflammation is a localized 

inflammation of the nerve tissue or parts of the peripheral nervous system (PNS) and central nervous 

system (CNS), which initially acts as a protective response to repair the injury by activation of 

microglia, astrocyte and elevating cytokines, chemokines, antibodies and T-lymphocyte production 

[14]. However, prolonged activation of microglia was revealed to be linked with excessive release of 

neurotoxic constituents such as nitric oxide (NO), prostaglandin E2 (PGE2), series of pro-

inflammatory cytokines, chemokines, tumor necrosis factor (TNF) and reactive oxygen species (ROS) 

[15-16]. Despite many studies focusing on the anti-inflammatory treatments of insect bites and allergic 

responses, to date, little is known about the neuroinflammatory effects of CN extract. 

Metabolomics is a comprehensive and competent study in fingerprinting the chemical profile of 

plants [17-18]. It is also widely used in other fields such as food chemistry, toxicology, medicine, and 

agriculture [19-20]. However, the only known metabolomics study on CN is the anaphylaxis model of 

food allergy, which was comprehensively studied by Khoo et al. [11,21]. The previous study 

confirmed that CN water extract possessed anti-inflammatory activities in RAW 264.7 macrophage 

cells which are common for the peripheral inflammation. Hence, this present study aimed to focus and 

optimize the solvents extraction of CN dried leaves concerning anti-neuroinflammatory in CNS effects 

towards inhibition of nitrite oxide activation in LPS-stimulated brain microglial cell line (BV2) seen 

via 1H NMR platform. 

 

2. Materials and Methods 

 

2.1. Plant Material  

 
Clinacanthus nutans (CN) plants that were grown under the same environmental, geographic, and 

growth conditions were collected from Sendayan, Negeri Sembilan (coordinates: 2°38'03.4"N 

101°53'20.5"E), Malaysia in December 2015. A botanist authenticated the plant sample at Biodiversity 

Unit, Institute of Bioscience, Universiti Putra Malaysia, and a voucher specimen (SK 2883/15) was 

deposited at the unit herbarium. The freshly collected leaves were separated from the stems and dried 

under shade in a glasshouse for 9 consecutive days. The dried leaf material was then ground in a 

blender to powder. The size uniformity was ensured by sieving through a stainless-steel mesh of 200 

mm diameter and stored in airtight containers at 4 ± 2 °C before further steps. 

 

2.2. Extraction 

 
Three different solvent extracts of CN dried powdered leaves were prepared by maceration 

extraction method. The solvents used for extraction were water, 50% ethanol (50% EtOH), and 

ethanol (EtOH). The plant material was extracted in each specified solvent (ratio of 1g: 50 mL) in a 

container kept away from sunlight for three days. The extract was repeated another two times with 

fresh solvent, and all of the extracts were filtered before pooled together [22]. The filtrate was 

combined, and the solvent was removed using a rotary evaporator at 40 °C under vacuum. The 

resulted leaves crude extracts of CN (CNE) for each 1 mL of maceration was lyophilized to give 
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yields of aqueous: 6 mg; 50% EtOH: 5 mg and EtOH: 1 mg. All dried extracts were kept frozen at -

80°C until further use. 

 

2.3. Cell Culture 

 
Murine microglial cells (BV2) were kindly provided by Dr. Sharmili Vidyadaran from 

Immunology Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia. The 

BV2 cell lines were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS), 1% penicillin and streptomycin, 0.5% fungizone, 0.1% gentamycin, 0.3% 

insulin, 1% non-essential amino acid, and maintained in a humidified incubator with 5% CO2 at 37 °C. 

The cultured cells with 90% of confluence were harvested and seeded in 96-well plates with a density 

of 10000 cells per well. 

 

2.4. Cell Viability (MTT Assay) 

 
The MTT cell viability assay was used to access the cytotoxicity and viability of CN extracts 

on BV2 cells, as previously described [23] with modifications. Briefly, all extracts were reconstituted 

using DMEM to 10 mg/mL and added with 0.1% DMSO for better homogenization. It was then 

further diluted in two-fold dilution into seven concentrations of 500 to 8.81 μg/mL using sterile 

DMEM prior to the assay. The cells treated with prepared extracts or 0.1% DMSO (negative control) 

in a 96-wells plate were incubated for 48 h before the reaction was terminated with MTT reagent. The 

MTT reagent in 20 μL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 5 

mg/mL) was added to each well of 100 μL DMEM and incubated for another 4 h at 37 °C. The 

mixture was then removed before 100μL of 100% DMSO was added to dissolve the formazan crystals, 

and the absorbance was taken at 570 nm using a microplate reader (Tecan Infinite F200 plate reader, 

Männedorf, Switzerland). The mean absorbance for the negative control (0.1% DMSO) was 

normalized as 100%. 

 

2.5. Nitrite Assay 

 
The production of nitrite (NO2

−) released in the cell culture of the BV2 cells was measured by 

using Nitric oxide (NO) Griess assay. BV2 cells with a total of 1×104 cells/well were seeded in 96-

well plate overnight. Cells were then stimulated with or without treatment extracts (N: normal, LPS, 

AQ: aqueous, 50EtOH: 50% ethanol or EtOH: ethanol) for 1 h followed with or without stimulation of 

lipopolysaccharides (LPS) (Escherichia coli, serotype 055: B5) (Sigma, USA) at 1μg/mL before 

incubation for another 48 h. To perform the assay, 50 μL each of cell supernatant and Griess reagent 

(1% sulfanilamide and 0.1% N-naphthyl ethylenediamine dihydrochloride in 2.5% nitrite assay 

phosphoric acid (H3PO4) were mixed and incubated in a dark room for 15 min at room temperature. 

The absorbance values at wavelength 550 nm were obtained using the Tecan Infinite F200 plate reader 

(Männedorf, Switzerland). The results were expressed as IC50 (the half-maximal inhibitory 

concentration) via the dose-response curve (see Supporting information). 

 

2.6. 1H NMR Metabolite Profiling of CN Extracts 

 
The 1H NMR acquisition and profiling methods were carried out as Khoo et al. [22]. Each 

solvent extract in 15mg for six replicates was weighed and transferred into a microtube and dissolved 

in 0.375 mL of CD3OD and 0.375 mL of KH2PO4 buffer in D2O (pH 6.0), containing 0.1% TSP. All 

the tubes were vortexed for 10 minutes, followed by sonication at room temperature for 15 minutes, 

and finally centrifuged at 100,000 rpm for 20 minutes. The supernatant of 600µl was transferred into a 

5 mm NMR tube for analysis. The spectra were acquired using a 500 MHz NMR spectrometer (Varian 

Inova 500, Illinois, USA) at 25 °C. Phase, baseline corrections of spectra, and calibration of TSP as 
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chemical shift indicators were conducted using Chenomx software (version 8.1, Alberta, Canada). To 

support compound identification, J-resolved experiments were done. 

 

2.7. Data Processing and Multivariate Data Analysis of 1H NMR Spectra 

 
All of the NMR spectra were manually phased, baseline corrected and calibrated to TSP at 

0.00 ppm. The chemical shift (δ) region 0 to 10 was reduced to integrated bins of 0.04 ppm width to be 

used in the Chenomx NMR software package (Chenomx NMR Suite 5.1 Professional, Edmonton, 

Canada) for multivariate pattern recognition analysis. The spectral region associated with residual 

water (4.66–5.05 ppm) was removed. The remaining spectral segments for each NMR spectrum were 

normalized to the total sum of the spectral intensity to partially compensate for the difference in 

concentrations of the samples. NMR data was then imported to SIMCA-P 13.0 software package 

(Umetrics, Umeå, Sweden) for analysis and visualization by multivariate statistical methods. Data 

were mean-centered, and Pareto scaled before analysis for Principal Component Analysis (PCA) and 

Partial Least Squares (PLS) regression analysis. Data were visualized with the scores plot of the two 

principal components (PC1 and PC2) in which each point represented an individual spectrum of a 

sample. The metabolites associated with the group separation were indicated by the corresponding 

loading plots, in which each point stood for a single NMR spectral bin. 
 

The validation and significance of the model were done by using R2X/ R2Y/ and Q2 values, a 

permutation test and CV-ANOVA when needed. One-way analysis of variance (ANOVA; GraphPad 

Prism ver. 6.0) was also used to interpret data as Tukey’s test applied as post hoc analysis method. The 

results were displayed as mean ± standard error of the mean (SEM) with P-value below 0.05 was 

considered significantly different 

 

3.  Results and Discussion  

 
3.1. 1H NMR of Clinacanthus nutans Leaf Extracts 

 

Insights into the variations in chemical profiles in herbs, including tea, as a result of 

geographical, climatic, environmental [24], and process variables, have been achieved using the 

metabolomics platform [11,22]. Herein, the difference in chemical composition as the result of 

different solvents polarity in the extraction step was unveiled. 

The reported studies by Khoo et al. [22] proved that the choice of plant part and drying 

procedure greatly influenced the metabolites profile and bioactivities of Clinacanthus nutans stems 

and leaves. Extended studies by the same team in 2018 [11], explored the difference of aqueous and 

ethanolic CN leaf extracts of different percentage ratios of ethanol (100, 70, 50, 20%) by two 

extraction methods of sonication and maceration. The results successfully revealed that there was no 

significant difference in metabolite profiles between sonication and maceration in water, but the 

solvent choices proved to play a significant role in the variation of CN extract contents. 

In the present study, air-dried CN leaf from the same plantation source as Khoo et al. [11] was 

extracted by maceration with water, 50% ethanol, and ethanol by a slight modification of drying place 

and harvesting season. The current study exhibited a slight difference in the number of the identified 

metabolites and their concentrations compared to Khoo et al. [22]. Forty-four compounds were 

successfully identified, whereas 38 were previously reported. These differences in CN 

phytoconstituents might be due to the harvesting season, and the processing method wherein the 

leaves in the current study were dried in a covered drying house whereas the previous samples were 

not. Mass spectrometric analysis of CN phytochemicals was determined to be different in phenolic, 

flavonoid and antioxidant activities might be due to the plant origin and its agronomic factors such as 

light intensity, temperature and soil characteristics [25]. However, to the best of our knowledge, there 

is no study focusing on the effect of Malaysian tropical seasons on the phytochemical constituent 

variation of certain plant extracts. Thus, this would be an interesting subject to be focused on.  

Figure 1 shows the representative of 1H NMR spectra for each sample extract. Visual 

inspection of the aligned spectra depicted the metabolite intensity, which differed due to the different 

polarity solvents used, particularly the sugar moiety in the region of 3-6 ppm could clearly be 
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differentiated. Other obvious varied regions were 1.0-3.0 and 6.5-8.5 ppm which mainly represented 

by aliphatic and aromatic groups, respectively. The spectral resonances were then assigned based on 

the previous works including those by Khoo et al. [11,22] and Hashim et al. [26] in addition to the 

library of Chenomx NMR suite 5.1 professional (Chenomx Inc., Canada) by peak fitting method as 

tabulated in Table S1 in supporting information. To gain a better understanding of the metabolite 

variations, the chemometric data set was analyzed using multivariate data analysis by SIMCA P.13.0 

software (Umetrics, Umeå, Sweden). 

 

 

 
 
Figure 1. 1H NMR (0 to 10.0 ppm) C. nutans of (I), ethanolic (II), 50% ethanolic and (III), and 

aqueous extracts*  
*Identified signals: (1) Stigmasterol, (2) Isoleucine, (3) Valine, (4) β-Sitosterol, (5) Butyrate, (6) Propionate, (7) 

Stigmasterol-β-D-glucoside, (8) Alanine, (9) Leucine, (10) Citraconate, (11) Acetate, (12) Glutamate, (13) Glutamine, (14) 

Clinacoside B, (15) Citric acid, (16) Catechin, (17) Clinacoside A, (18) Orientin, (19) Gendarucin A, (20) Choline, (21) 

Schaftoside, (22) Mixture of cerebrosides, (23) Sucrose, (24) Fructose, (25) Vanilic acid, (26) Clinacoside C, (27) Ascorbic 

acid, (28) Betulin, (29) Cycloclinacoside A1,  (30) α –Glucose, (31)  β –Glucose, (32) Quercetin 3-O-rhamnoside, (33) cis-

Aconitate, (34) Isoorientin, (35) Monoacylmonogalactosylglycerol, (36) Gallic acid, (37) Proline, (38) Tryptophan, (39) 

Cycloclinacoside A2, (40) Chlorogenic acid, (41) Quercetin, (42) Vitexin, (43) Adenine, (44) Formic acid. 

 

3.2. Multivariate Analysis of 1H NMR Data of Clinacanthus nutans Leaf Extracts 

 

SIMCA-P.13.0 software (Umetrics, Umeå, Sweden) was used to carry out multivariate 

modeling. The unsupervised Principal Component Analysis (PCA) (Figure S3) in supporting 

information exhibited aqueous extract to be clearly discriminated from the other extracts. Principal 

component 1 (PC1) represented the maximum variation constituted of 72.1% while component 2 

(PC2) by 21.4%. The R2 and Q2 values of goodness and predictability of the model, respectively, 

indicated the robustness of the model. The value of R2X (cum) is 0.987, while Q2 is 0.954, thus 

verified the model validity to be used in metabolomics research as indicated that Q2 should be more 

than 0.5 but smaller than R2 [27]. 

The loading column plot in Figure 2 and the loading scatter plot in Figure S3(B) in supporting 

information indicate the corresponding metabolites for the separation observed in Figure S3(A). 
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Metabolites at the positive side are attributed more to the aqueous extract, while EtOH and 50%EtOH 

extracts are abundant in the negative side, whereby both of the later shared high chemical profiles 

similarity.  

Variables that further away from the loading plot origin on both sides of positive and negative 

are suggested to give a stronger impact on the cluster separation [27]. The loading column plot by 

PC1, as shown in Figure 2, is an aid in identifying the discriminants which are responsible for the 

clustering of the extract groups. The error bar for the column, which does not cross 0, prevails 

statistical significant [27]. Thirteen compounds were observed to be significantly abundance in 

aqueous extract could be categorized as primary and intermediate metabolites; (valine, isoleucine, 

proline propionate, butyrate, acetate, cis-aconitate), and secondary metabolites of phenolic group 

(chlorogenic acid, gallic acid and vitexin), and sulfur-containing glucoside compounds (clinacoside 

A2), and phytosterol (stigmasterol and β-sitosterol). In addition, Figure S3 (B) of loading scatter plot 

also demonstrates that propionate (6) and acetate (11) might have a strong correlation with the 

aqueous extract, as schaftoside (21) with ethanolic and 50% ethanolic extracts.  

 

 

 

 
Figure 2. Different solvent polarities of CN extracts in the loading column plot of the PCA model 

 
Ethanolic and 50% ethanolic extracts exhibited a higher number of compounds for both 

primary and secondary metabolites (Figure 2). Twenty of the identified compounds were of the 

primary and intermediate group (alanine, leucine, β-glucose, fructose, sucrose, citraconate, a mixture 

of cerebroside, monoacylmonogalactosylglycerol, ascorbic acid), and secondary metabolites of 

phenolic group (schaftoside, gendarucin A, orientin, quercetin-3-O-rhamnoside), sulfur-containing 

glucoside compounds (clinacoside A, clinacoside B, clinacoside C, cycloclinacoside A1), phytosterols 

(stigmasterol--D-glucoside, vanillic acid), and terpenoid (betulin). These results are in parallel with 

Khoo et al. [22], wherein the total number of metabolites obtained was higher in ethanolic solvent 

extracts compared to that of water. The major compounds which are acetate, propionate, clinacosides–

A and -C, butyrate, schaftoside and propionate contributed to the separation in the previous studies 

were also observed in the present. This consummates that ethanol was a better solvent for extraction 

than water in obtaining more compounds. However, the bioactivity which might be due to the 

synergistic effect between compounds cannot be determined just base on the total number of the 

compounds. Hence, the identified metabolites could then be useful in determining the bioactive 

compounds via correlation to the adopted bioassay such as anti-neuroinflammation, which will be 

further elaborated.  
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3.3. Anti-neuroinflammatory Activity of Clinacanthus nutans Leaf Extracts 

 

3.3.1. In-Vitro Cytotoxicity Test on BV2 Cells 

 

The use of the BV2 cell line is well documented for neuro studies related to LPS induction 

[28-29]. Figure 3 depicts the percentage of cell viability after 48 hours being treated with 3 different 

types of CN extracts. The viability of BV2 cells treated with extracts was not significantly reduced 

compared to those treated with 0.1% DMSO (negative control). Referring to ISO 10993-5 [30], the 

percentage of viability above 80% is considered non-toxic, within 80-40% is moderate, and below 

40% is strongly cytotoxic. It was proven accordingly that all of the extracts used in this study were 

non-toxic towards the microglia-BV2 cell line as their cell viability percentages are above 80%. 

Hence, there was no cytotoxicity induced by the extracts alone. 

 

 
Figure 3. Dose response graph of aqueous, 50%EtOH and EtOH CN extracts on BV2 cells viability 

 

Figure 4(A) shows that the cells treated with 0.1% DMSO, 500 μg/mL of each aqueous CN, 

50%EtOH, and EtOH extract failed to induce significant NO production. In contrast, 1 µg/mL of LPS 

alone has significantly induced NO production in the cells. Nitric oxide (NO) is a gaseous molecule 

synthesized from L-arginine by the enzyme nitric oxide synthase (NOS) [31]. NO acts as a 

neurotransmitter and a component of the signaling pathways that operate between cerebral blood 

vessels, neurons and glial cells [32]. The cells pretreated with various concentrations (7.81–500 

μg/mL) of extracts or 0.1% DMSO for 1 h, then followed by 48 h of LPS induction (1µg/mL) are 

disclosed in Figure 4(B). All three extracts inhibited LPS from inducing the NO production in a 

concentration-dependent manner (Figure 4 (B)), with CN aqueous extract being the most potent (IC50= 

336.2 ± 4.7 μg/mL) followed by 50% EtOH (434.2 ± 5.2*) and EtOH (475.5±4.3*). Statistically 

significant difference from LPS induction is indicated as ∗p < 0.05 by one-way ANOVA post hoc 

Tukey test. The related dose-response curve graph of Figure S3 is provided in Supporting information. 

Morphological changes of microglia activated by LPS and treated by extracts in 24 and 48 

hours were observed, and their representative images are shown in Figure 4(C-1 to -4). The cells 

exhibited different structures at different stages of activities. Microglia body at resting mode (black 

arrow) as seen in NO LPS (control), C-1 and C-3 has a smaller body than those enlarged activated 

microglia (LPS, C-2, and C-4).  The activated microglia (C-4) looked bushy due to the thickened body 

and elongated arms (red arrow) or like amoeboid shape (blue arrow). In general, the morphological 

features of microglia were described as resting cells when they are small, round with normal 

ramifications, while the activated cells are a bigger, more amoeboid shape with retracted processes 

with a range of intermediate activation such as bipolar, rod-like and bushy [33]. Compared to C-4, 
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microglial morphology after treated with C.nutans aqueous extract for 48 h (D-I) exhibited much of 

resting microglia body (black arrow).  Ethanol (D-II) and 50% ethanol extract (D-III) showed a lesser 

resting body when compared to aqueous extract. These results suggest that aqueous extract was the 

most active in inhibiting NO production induced by LPS at IC50 of 336.2 ± 4.7 µg/mL.  

 
 

 

 

 

 
Figure 4. Effect of C.nutans extracts on BV2 cells (A) NO production after treatment of different CN 

extracts (500 μg/mL) in 48 h; (B) NO production after LPS induction and then treatment by 

CN extracts at different doses in 48 h; (C) representative images of with and without LPS 

stimulation in 24 and 48 h; (D) LPS-induced and treatment of different CN extracts in 48 h 

(Black arrow = healthy microglia body, red arrow = activated microglia of bushy shape, blue 

arrow = amoeboid shape of microglia). Magnification viewed at × 100. Scale bar: 150µm. 
 

 

3.4. Plant Metabolites and Neuroinflammatory Activity Correlation 

 

Partial Least Square (PLS) regression analysis was applied to recognize the correlation 

between CN phytochemicals in the extracts with their NO inhibition in in vitro neuroinflammatory 

activity. The data set comprised of 18 observation data, with 232 X variables of plant NMR binned 

data and Y variable of 1/IC50 value obtained from the NO inhibition assay. PLS is a supervised 
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analysis of a combination between two blocks of matrices in which this technique provides a 

correlation between two data sets in a single graphical plot known as biplot which was visualized in 

Figure 5. The cross-validation of the constructed PLS model has proven acceptable based on goodness 

of fit (R2) and predictive power (Q2) of R2Y=0.996 and Q2=0.992. The biplot in Figure 5 also 

denotes the total explainable variation of 77% with component 1 (PC1), giving a higher value of 

62.9% than component 2 (PC2) of 14.1%.
 

 

 
Figure 5. PLS biplot describes a correlation between phytoconstituents and NO inhibitory activities in 

the BV2 cell line. Numbers for metabolites were assigned according to Figure 1 and Table 1 

 

The PLS biplot also envisioned distinct clusters of aqueous extract from ethanolic and 50% 

ethanolic extracts, as also previously seen in the PCA model (Figure 2 and Figure S2(A) and S2(B)). 

The aqueous extract was the closest to the NO inhibitory activities demonstrating that this extract 

might contain the pertinent bioactive constituents. Hence, the variable importance in the projection 

(VIP) values of the plant metabolites greater than 0.7, which gave an influential contribution to the 

clustering in the PLS model, was selected [34].  

The VIP values of ≥ 0.7 led to the selection of 30 compounds based on the listed 1H-NMR 

chemical shifts (ppm) (Figure 6) with reference to Table 1 for their binned data of chemical shifts. 

Figure 7 further visualizes the distribution of the variables based on PC1, whereby they were assigned 

as acetate, propionate, valine, butyrate, and isoleucine of primary metabolite group and 

cycloclinacoside A2, chlorogenic acid, vitexin and β-sitosterol of the secondary group. These two 

groups were strongly correlated to the NO inhibitory activity in the positive quadrant of PC1 (Figure 

7) of the aqueous extract in which their presence was also significantly higher than the other 

compounds. Other metabolites which were in close range to the activity include schaftoside, 

clinacoside C, monoacylmonogalactosylglycerol, fructose, clinacoside B, ascorbic acid, a mixture of 

cerebrosides, choline, stigmasterol-β-D-glucoside, citric acid, catechin, clinacoside A, orientin, 

leucine, cycloclinacoside A1, sucrose, β-glucose, vanillic acid, gendarucin A and betulin. These 

metabolites were in the downward position of PC1 which demonstrated that they could abundantly 

found in EtOH and 50%EtOH extracts. 
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Figure 6. Metabolites with variable importance of projection (VIP) values ≥ 0.7 of the PLS model 

 

 
Figure 7. PLS loading column plot of different CN extracts by PC1 

Any multivariate model must be validated to be acceptable according to a certain value. In 

general, the closer the R2 values to 1, the better the performance of a model in terms of its goodness of 

fit and predictive quality of the regression model. To stipulate the Y-axis intercepts, the PLS biplot 

validation has to be further confirmed by 100 random permutation test [34-35].  According to Eriksson 

et al. [27], Y-axis intercepts should be within the limits of R2< 0.3 and Q2< 0.05, and the R2-line is 

far from being horizontal for a model to be considered validated. CV-ANOVA test revealed a 

significant p-value of 8.33212x10e-021 in the PLS model in which p<0.05 indicates that the model is 

valid [27]. Figure 8 (A) and (B) show that the R2 value of the regression line is 0.999 in observation 

values vs. predicted values plot, whereas the Y-axis intercepts of R2 and Q2 for NO inhibition assay 

are 0.016 and -0.298, respectively.  
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Figure 8. (A) Regression plot of observed vs. predicted values and (B) permutation test of the PLS 

model of different CN extracts. 

 

3.5. Relative Quantification of the Discriminatory Metabolites  

 

 The binned data of NMR are the intensity of the metabolites generated according to 

the integrated mean peak calculated from the area and intensity of the most abundance signals 

of the respective metabolites [27]. The relative quantification in the PLS model, which 

attributed to the 1H NMR binned area-intensity were summarized in the graphical box plot 

(Figure 9). One-way analysis of variance (ANOVA; SPSS version 16) was also used to 

display validated results as mean ± standard error of the mean (SEM). All 30 metabolites are 

having a P-value below 0.05 implying the significant difference between the aqueous extract 

group from the other two. 

In addition, a hierarchical clustering analysis (HCA) was performed to visualize the 

metabolites variation in the three solvents polarity extracts. The Euclidean distance measures 

and Ward's clustering algorithm of HCA were computed based on the normalized and Pareto 

scaled 1H NMR data of the 30 discriminatory metabolites. The results were presented in 

Figure 10.  The concentration of each metabolite was colored based on a normalized scale 

from minimum -2 (dark blue) to a maximum of 2 (light yellow). Following Figure 7, there are 

nine phytoconstituents in CN aqueous extract, namely clinacoside A2, chlorogenic acid, 

isoleucine, butyrate, β-sitosterol, vitexin, valine, acetate, and propionate with light yellow 

colour. Whereas another 21 phytocompounds were found in high concentrations in 50% 

EtOH and EtOH extracts. 

In addition, CN aqueous extract was closely correlated to the highest NO inhibition 

activity, as depicted in Figure 5. Herein only the major phytoconstituents related to the 

activity will be discussed in particular.  The present observation of high propionate, butyrate, 

and acetate in the water-soaked CN is similar to the previously reported study [22] wherein 

the retention of these compounds was hypothesized to be due to anaerobic fermentation of 

increased interaction between water and plant. Main metabolic products of anaerobic 

fermentation usually are short fatty acids such as acetate, lactate, and butyrate. While acetate 

is the source of carbon and energy for many metabolic reactions, lactate is the intermediate of 

fermentation in the production of acetate, butyrate, and propionate [36]. Another observation 

was the reduction of simple sugar and carbohydrate as hypothesized to be a direct product of 

butyrate from glucose and also Butyryl CoA [37].   

Worth to note that acetate, butyrate, and vitexin supplementations have shown in vivo 

and in vitro potential of anti-inflammatory and neuroprotective effects [38-40]. Propionate, 

A      B 
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another identified compound, has been distinguished to be the precursor of ibuprofen, 

flurbiprofen, and naproxen, which are prescribed to reduce pain and inflammation [41]. CN 

aqueous extract was perceived to be rich with phenolic compounds, which are well known to 

attenuate inflammation [42]. 

 

 
Figure 9. The relative quantification of discriminatory metabolites in CN extract using 

1H‐ NMR spectra binned data with VIP value ≥0.7 in the PLS model. All data are 

expressed as mean ± standard error (SEM) 
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Figure 10. Heatmap of the identified discriminatory metabolites in CN extracts of water 

(AQ), 50% ethanolic and (E50) ethanolic (E), based on HCA using the Euclidean 

distance model and Ward's minimum variance method. The concentration of each 

metabolite is colored based on a normalized scale from minimum -2 (dark blue) to 

a maximum of 2 (light yellow) 

 

3.6. The Suggested Metabolites Biosynthesis Pathways 

 

 A schematic diagram in Figure 11 suggests the metabolite biosynthetic pathways in 

the CN aqueous extract, which was constructed based on carbohydrate fermentation, acetate-

mevalonate, amino acid, phenylpropanoid, purine, flavonoid, glycine, serine and threonine, 

and β-alanine metabolisms, sulfur assimilation and mevalonate-independent pathway. The 

schematic pathways of suggested biosynthesis were referred to Khoo et al. [22] with little 

modifications according to the current findings and the KEGG library of phytochemical 

compounds. A comparative summary of identified biomarkers in the current study with the 

previous report was also highlighted in Figure 11. 
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Figure 11. Schematic diagram of suggested biosynthesis of CN aqueous extract with modifications 

from Khoo et al. [22] and KEGG (http://www.kegg.jp). Note that metabolites in a green 

box with black font are similar in both reports, metabolites in a green box with the white 

font being reported only in the current study, while metabolites in a grey font are those 

reported in the previous study only. 

 

4.  Conclusion 

1H NMR metabolomics profiling was successfully used to identify the presence of 

phytoconstituents in CN extracts of different solvents polarity, whereby almost identical 

results were obtained when compared to the previous study [22].  Further confirmation by bi-

plot PLS validated model exhibited that the best solvent which correlated much with NO 

inhibitory activities on the BV2 cell line was CN aqueous extract. Among the 44 identified 

metabolites, 30 of them namely schaftoside, acetate, propionate, alanine, clinacoside C, 

monoacylmonogalactosylglycerol, fructose, clinacoslide B, ascorbic acid, a mixture of 

cerebrosides, choline, stigmasterol-β-glucoside, citric acid, valine, catechin, clinacoside A, 

orientin, chlorogenic acid, leucine, butyrate, cycloclinacoside A1 and A2, sucrose, vitexin, β-

sitosterol, β-glucose, vanillic acid, gendarucin A, betulin and isoleucine were the metabolites 

which might contribute the most to the bioactivity. These results established a significant role 
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in the distribution of metabolites content extracted from CN for having the highest biological 

efficacy.  
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